

# REPORT

22-1493 S

October 21, 2022

# Explorations and Geotechnical Engineering Services

Proposed Highway Garage Salisbury Highway (NH Route 4) Andover, New Hampshire

#### **Prepared For:**

Dubois & King, Inc. Attention: John Kenney, P.E. 36 Penn Plaza Bangor, ME 04401

#### Prepared By:

S. W. Cole Engineering, Inc. 10 Centre Road Somersworth, NH 03878-2926 T: 603.692.0088

## **TABLE OF CONTENTS**

| 1.0 INTRODUCTIO               | )N                                 |    |  |  |  |  |
|-------------------------------|------------------------------------|----|--|--|--|--|
| 1.1 Scope and I               | Purpose                            | 1  |  |  |  |  |
| 1.2 Site and Pro              | pposed Construction                | 1  |  |  |  |  |
| 2.0 EXPLORATION               | AND TESTING                        | 2  |  |  |  |  |
| 2.1 Explorations              | S                                  | 2  |  |  |  |  |
| 2.2 Field Testing             | g                                  | 2  |  |  |  |  |
| 2.3 Laboratory                | Testing                            | 2  |  |  |  |  |
| 3.0 SUBSURFACE                | CONDITIONS                         | 2  |  |  |  |  |
| 3.1 Soil and Be               | drock                              | 2  |  |  |  |  |
| 3.2 Groundwate                | er                                 | 3  |  |  |  |  |
| 4.0 EVALUATION                | AND RECOMMENDATIONS                | 3  |  |  |  |  |
| 4.1 General Fin               | dings                              | 3  |  |  |  |  |
| 4.2 Site Prepara              | ation                              | 3  |  |  |  |  |
| 4.3 Excavation and Dewatering |                                    |    |  |  |  |  |
| 4.4 Foundations               |                                    |    |  |  |  |  |
| 4.5 Foundation                | Drainage                           | 5  |  |  |  |  |
| 4.6 Slab-On-Gra               | ade                                | 5  |  |  |  |  |
| 4.7 Entrance SI               | abs, Concrete Apron, and Sidewalks | 66 |  |  |  |  |
| 4.8 Fill, Backfill            | and Compaction                     | 6  |  |  |  |  |
| 4.9 Weather Co                | nsiderations                       | 7  |  |  |  |  |
| 4.10 Design Re                | view and Construction Testing      | 8  |  |  |  |  |
| 5.0 CLOSURE                   |                                    | 8  |  |  |  |  |
|                               |                                    |    |  |  |  |  |
| Appendix A                    | Limitations                        |    |  |  |  |  |
| Appendix B                    | Figures                            |    |  |  |  |  |
| Appendix C                    | Exploration Logs & Key             |    |  |  |  |  |
| Appendix D                    | Laboratory Test Results            |    |  |  |  |  |



22-1493 S

October 21, 2022

Dubois & King, Inc. Attention: John Kenney, P.E. 36 Penn Plaza Bangor, ME 04401

Subject:

Explorations and Geotechnical Engineering Services

Proposed Highway Garage Salisbury Highway (NH Route 4) Andover, New Hampshire

#### Dear John:

In accordance with our Proposal, dated September 13, 2022, we have performed subsurface explorations for the subject project. This report summarizes our findings and geotechnical recommendations, and its contents are subject to the limitations set forth in Appendix A.

#### 1.0 INTRODUCTION

#### 1.1 Scope and Purpose

The purpose of our services was to obtain subsurface information at the site in order to develop geotechnical recommendations relative to foundations and earthwork associated with the proposed construction. Our scope of services included test boring explorations, soils laboratory testing, a geotechnical analysis of the subsurface findings and preparation of this report.

#### 1.2 Site and Proposed Construction

The site is located off the east side of Salisbury Highway (NH Route 4) in Andover, New Hampshire and is comprised of mature wooded area. The site is bordered to the north by existing gravel access drive and to the east by an existing gravel pit. Based on the plans provided, existing site grades generally slope downward northwest to southeast from about elevation 624 to 614 feet.



We understand proposed construction will consist of a new 50 by 75 foot highway garage building with paved access drive and parking areas to the north and west. We understand finish floor elevation is planned at about elevation 621.7 feet.

#### 2.0 EXPLORATION AND TESTING

#### 2.1 Explorations

Four test borings (B-1 through B-4) were made at the site on October 12, 2022 by S. W. Cole Explorations, LLC. The exploration locations were selected and established in the field by S. W. Cole Engineering, Inc. (S.W.COLE) using a mapping grade GPS receiver. The approximate exploration locations are shown on the "Exploration Location Plan" attached in Appendix B. Logs of the explorations and a key to the notes and symbols used on the logs are attached in Appendix C. Elevations noted on the logs were estimated based on topographic information shown on the "Exploration Location Plan."

#### 2.2 Field Testing

The test borings were drilled using hollow stem auger drilling techniques. The soils were sampled at 2 to 5 foot intervals with a split-spoon sampler using the Standard Penetration Testing (SPT) procedures.

#### 2.3 Laboratory Testing

Soil samples obtained from the explorations were returned to our laboratory for further classification and testing. A total of two gradation and moisture content tests were performed on select soil samples. Results of gradations are included in Appendix D. Moisture content results are noted on the boring logs.

#### 3.0 SUBSURFACE CONDITIONS

#### 3.1 Soil and Bedrock

Beneath a surficial 3 to 4 inches of topsoil, the test borings encountered native soil deposits consisting of loose to medium dense, light brown to gray sand with varying portions of silt and gravel to a depth of 27 feet, where the test borings were terminated. Surficial roots were encountered extending to a depth of 1 foot below the ground surface in test boring B-4. For more detailed subsurface information, refer to the attached logs.



#### 3.2 Groundwater

Saturated soils were encountered below depths ranging from 15 to 18 feet below the ground surface at the time of exploration work. Long term groundwater information is not available. It should be anticipated that groundwater levels will fluctuate, particularly in response to periods of snowmelt and precipitation, as well as changes in site use.

#### 4.0 EVALUATION AND RECOMMENDATIONS

#### 4.1 General Findings

Based on the subsurface findings, the proposed construction appears feasible from a geotechnical standpoint. The principle geotechnical considerations include:

- Spread footing foundations and a slab-on-grade floors bearing on properly prepared subgrades appear suitable for the proposed building. Footings should bear on a 3 inch leveling coarse of compacted Crushed Stone overlying undisturbed native non-organic soils. Slab-on-grade floors should bear on at least 12 inches of properly compacted Structural Fill overlying properly prepared subgrades.
- All topsoil and soils containing organics must be completely removed from beneath proposed construction and replaced with compacted Granular Borrow.
   The extent of removal should extend laterally 1 foot for every 1 foot of excavation depth (1H:1V bearing splay).
- The design frost depth for the Andover, New Hampshire area is 5.0 feet. Footings that will be exposed to freezing temperatures (i.e. perimeter footings) should have at least 5.0 feet of soil cover to provide frost protection.
- Given the drainage characteristics of the native soils and depth to groundwater in explorations, we do not anticipate the need for incorporating perimeter foundation drainage at the site.

#### 4.2 Site Preparation

The soils that will be exposed will be subject to erosion. Site preparation should begin with construction of an erosion control system to protect drainage ways and areas outside the construction limits. All topsoil and soils containing organic material must be completely



removed beneath areas of proposed construction and replaced with compacted Granular Borrow. The extent of removal should extend laterally 1 foot for every 1 foot of excavation depth (1H:1V bearing splay). As much vegetation as possible should remain undisturbed adjacent to the construction site to reduce the potential for erosion.

#### 4.3 Excavation and Dewatering

Excavation work will generally encounter topsoil overlying native sands with surficial roots, overlying non-organic subgrade soils. The subgrade soils will be susceptible to disturbance, particularly when wet. Care must be exercised during construction to reduce disturbance of the bearing soils. Final cuts to subgrade should be done with a smoothedged bucket. Should the subgrade become yielding or difficult to work, disturbed areas should be over-excavated and backfilled with compacted Granular Borrow.

The Contractor should anticipate the need for dewatering excavations, particularly during and following periods of precipitation. Ditching with gravity drainage, and sumping and pumping should be adequate.

Excavations must be properly shored and/or sloped in accordance with OSHA trenching regulations to prevent sloughing and caving of the sidewalls during construction. Care must be taken to preclude undermining adjacent structures, utilities and roadways as needed. The contractor is responsible for selection, design, and implementation of the excavation and dewatering program.

#### 4.4 Foundations

We recommend the proposed building be supported on spread footings cast on a 3 inch leveling coarse of Crushed Stone, placed on properly prepared subgrades soils. We recommend the following geotechnical parameters for foundation design:



| GEOTECHNICAL FOUNDATION DESIGN PARAM                         | /IETERS                           |
|--------------------------------------------------------------|-----------------------------------|
| Design Frost Depth                                           | 5.0 feet                          |
| Net Allowable Foundation Bearing Pressure                    | 2.0 ksf                           |
| Seismic Site Class (2015 IBC, N-value Method)                | D                                 |
| Total Unit Weight of Backfill – Structural Fill              | 125 pcf                           |
| Internal Friction Angle – Structural Fill                    | 32°                               |
| Base Friction Factor – Concrete to Crushed Stone             | 0.45                              |
| At-Rest Lateral Earth Pressure Coefficient – Structural Fill | 0.5                               |
| Estimated Post-Construction Settlement                       | 1 inch or less                    |
| Estimated Post-Construction Differential Settlement          | 1/2-inch or less over<br>100 feet |

Strip and column footings should be at least 24 inches in width, regardless of the bearing pressure.

#### 4.5 Foundation Drainage

Given the drainage characteristics of the native soils and depth to groundwater observed in the explorations, we do not anticipate the need for incorporating perimeter foundation drainage at the site. It is important to reduce the potential for surface water infiltration into foundation backfills. This can be achieved by surfacing foundation backfill with a relatively impermeable layer such as asphalt pavement, walkways, entrance slabs, and/or clay/loam cap and sloping the grade away from the building. We recommend a periodic maintenance schedule be established to maintain the functionality of installed permeable layer(s).

#### 4.6 Slab-On-Grade

Slab-on-grade floors may be designed using a subgrade reaction modulus of 100 pci (pounds per cubic inch) provided the slab is underlain by at least 12 inches of compacted Structural Fill placed over properly prepared subgrades. The structural engineer or concrete consultant must design steel reinforcing and joint spacing appropriate to slab thickness and function.

If there are areas where moisture sensitive flooring will be installed, we recommend installation of a sub-slab vapor retarder to reduce the potential for floor covering damage from moisture. The vapor retarder must have a permeance that is less than the floor cover or surface treatment that is applied to the slab. The vapor retarder must have sufficient



durability to withstand direct contact with the sub-slab base material and construction activity. The vapor retarder material should be placed according to the manufacturer's recommended method, including the taping, and lapping of all joints and wall connections. The architect and/or flooring consultant should select the vapor retarder products compatible with flooring and adhesive materials.

The slab-on-grades should be appropriately cured using moisture retention methods after casting. Typical floor slab curing methods should be used for at least 7 days. The architect or flooring consultant should assign curing methods consistent with current applicable American Concrete Institute (ACI) procedures with consideration of curing method compatibility to proposed surface treatments, flooring, and adhesive materials.

#### 4.7 Entrance Slabs, Concrete Apron, and Sidewalks

Entrance slabs, concrete apron, and sidewalks adjacent to the building must be designed to reduce the effects of differential frost action between adjacent pavement, doorways, and entrances. We recommend that non-frost susceptible Structural Fill be provided to a depth of at least 5.0 feet below the top of entrance slabs. This thickness of Structural Fill should extend the full footprint of the entrance slabs, thereafter, transitioning up to the bottom of the adjacent sidewalk or pavement gravels at a 3H:1V or flatter slope.

#### 4.8 Fill, Backfill and Compaction

We recommend the following fill and backfill materials: recycled products must also be tested in accordance with applicable environmental regulations and approved by a qualified environmental consultant.

<u>Structural Fill:</u> Backfill for foundations, slab base material, and material below exterior entrances slabs and sidewalks should be clean, non-frost susceptible sand and gravel meeting the gradation requirements for Structural Fill as given below:

| Struct     | ural Fill               |
|------------|-------------------------|
| Sieve Size | Percent Finer by Weight |
| 4 inch     | 100                     |
| 3 inch     | 90 to 100               |
| 1/4 inch   | 25 to 90                |
| No. 40     | 0 to 30                 |
| No. 200    | 0 to 6                  |



In our opinion, 2016 NHDOT Standard Specification 209.2.1.2 Granular Backfill (gravel) meets the requirements of Structural Fill.

<u>Granular Borrow</u>: Fill to raise grades in building and paved areas should be sand or silty sand meeting the following gradation:

| Granular Borrow |                         |  |  |  |  |  |  |  |
|-----------------|-------------------------|--|--|--|--|--|--|--|
| Sieve Size      | Percent Finer by Weight |  |  |  |  |  |  |  |
| 6 inch          | 100                     |  |  |  |  |  |  |  |
| Portion Passing | 3 inch Sieve            |  |  |  |  |  |  |  |
| No. 40          | 0 to 70                 |  |  |  |  |  |  |  |
| No. 200         | 0 to 20                 |  |  |  |  |  |  |  |

<u>Crushed Stone:</u> Crushed stone used beneath foundations should be washed, hard, durable rock meeting the requirements of 2016 NHDOT Standard Specification 703-1 Standard Stone Size #57.

<u>Re-Use:</u> The non-organic on-site soils may be reused as Granular Borrow, provided the material is at a moisture content capable of meeting projection compaction specifications.

<u>Placement and Compaction:</u> Fill should be placed in horizontal lifts and be compacted. Lift thickness should range between 6 to 12 inches depending upon the size and type of equipment such that the desired density is achieved throughout the lift thickness with 3 to 5 passes of the compaction equipment. We recommend that fill placed below building areas be compacted to at least 95 percent of its maximum dry density as determined by ASTM D-1557 (Modified Proctor). Foundation backfill should be compacted to at least 95 percent of ASTM D-1557. Crushed Stone should be compacted with 3 to 5 passes of a vibratory plate compactor having a static weight of at least 500 pounds.

#### 4.9 Weather Considerations

Construction activity should be limited during wet and freezing weather and the site soils may require drying or thawing before construction activities may continue. The contractor should anticipate the need for water to temper imported fills in order to facilitate compaction during dry weather. If construction takes place during cold weather, subgrades, foundations, and the floor slab must be protected during freezing conditions. Concrete and fill must not be placed on frozen soil; and once placed, the concrete and soil beneath the structure must be protected from freezing.



#### 4.10 Design Review and Construction Testing

S.W.COLE should be retained to review the construction documents prior to bidding to determine that our earthwork and foundation recommendations have been properly interpreted and implemented.

A construction materials testing and quality assurance program should be implemented during construction to observe compliance with the design concepts, plans, and specifications. S.W.COLE is available to observe earthwork activities, the preparation of foundation bearing surfaces and pavement subgrades, as well as to provide testing and IBC Special Inspection services for soils, concrete, steel, spray-applied fireproofing, firestopping, structural masonry and asphalt construction materials.

#### 5.0 CLOSURE

It has been a pleasure to be of assistance to you with this phase of your project. We look forward to working with you during the construction phase of the project.

Sincerely,

S. W. Cole Engineering, Inc.

Digitally signed by Tyler Deners, o=STATE Deners, o=STATE Deners, o=STATE DENERS OF STATE OF NEW HAMPS.

Tyler Demara Cole Engineering, Inc., ou email=tyler.demers@swcoe.eo Cole Engineering, Inc., Cole email=tyler.demers@swcofe.eo email=tyler.demeis@swaller.m, c=US
Date: 2022.10.21 12:22:32 -0.00055

Tyler S. Demers, P.E.

Project Geotechnical Engineer

TSD:rec

#### APPENDIX A

#### Limitations

This report has been prepared for the exclusive use of Dubois & King, Inc. for specific application to the proposed Highway Garage on Salisbury Highway (NH Route 4) in Andover, New Hampshire. S. W. Cole Engineering, Inc. (S.W.COLE) has endeavored to conduct our services in accordance with generally accepted soil and foundation engineering practices. No warranty, expressed or implied, is made.

The soil profiles described in the report are intended to convey general trends in subsurface conditions. The boundaries between strata are approximate and are based upon interpretation of exploration data and samples.

The analyses performed during this investigation and recommendations presented in this report are based in part upon the data obtained from subsurface explorations made at the site. Variations in subsurface conditions may occur between explorations and may not become evident until construction. If variations in subsurface conditions become evident after submission of this report, it will be necessary to evaluate their nature and to review the recommendations of this report.

Observations have been made during exploration work to assess site groundwater levels. Fluctuations in water levels will occur due to variations in rainfall, temperature, and other factors.

S.W.COLE's scope of services has not included the investigation, detection, or prevention of any Biological Pollutants at the project site or in any existing or proposed structure at the site. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and the byproducts of any such biological organisms.

Recommendations contained in this report are based substantially upon information provided by others regarding the proposed project. In the event that any changes are made in the design, nature, or location of the proposed project, S.W.COLE should review such changes as they relate to analyses associated with this report. Recommendations contained in this report shall not be considered valid unless the changes are reviewed by S.W.COLE.

## APPENDIX B

Figures



## APPENDIX C

Exploration Logs and Key

| E                   | _                       |                         |                                                                  |              |               |                          | В                                                    | ORING                            | 3           | LOG                                                       |                                                       |                    | RING<br>EET:         | NO.:          | <b>B-1</b><br>1 of 1               |
|---------------------|-------------------------|-------------------------|------------------------------------------------------------------|--------------|---------------|--------------------------|------------------------------------------------------|----------------------------------|-------------|-----------------------------------------------------------|-------------------------------------------------------|--------------------|----------------------|---------------|------------------------------------|
|                     |                         |                         |                                                                  |              |               | King, Ind                |                                                      |                                  |             |                                                           |                                                       | PR                 | OJEC                 | _             | 22-1493                            |
|                     | 1                       |                         |                                                                  |              |               |                          | ay Garag                                             | je<br>over, New Ha               |             | him                                                       |                                                       |                    |                      | _             | 10/12/2022                         |
|                     | COLE                    |                         |                                                                  | · _'         | Salisbui      | y rigiw                  | ay, Ando                                             | over, new na                     | mps         | me                                                        |                                                       | UA                 | IE FIN               | IISH: _       | 10/12/2022                         |
|                     | ng Info                 |                         | t <b>ion</b><br>ploration l                                      |              | -t: DI        |                          | -1> /                                                | M (FT) - 000                     |             |                                                           | TOTAL PERTUGEN. 070                                   | 000                | -                    |               |                                    |
|                     |                         |                         | V. Cole E                                                        |              |               |                          |                                                      | N (FT):620'<br>Jeff Lee          | +/-         |                                                           | TOTAL DEPTH (FT): 27.0 L DRILLING METHOD: Hollow Stem |                    |                      | Sean H        | ijywa                              |
|                     |                         |                         | ounted Cl                                                        |              |               |                          |                                                      | /OD: _ 2 1/4 in                  | /55         | i/8 in                                                    | SAMPLER: Standard Split-Spoon                         |                    |                      |               | -                                  |
|                     | IER TYP                 | _                       | itomatic                                                         | <b>.</b>     | 0.00          |                          |                                                      | WEIGHT (lbs):                    |             | 0                                                         | CASING ID/OD: N/A /N/A                                | ORE I              | BARRE                | L: <u>N/A</u> |                                    |
|                     |                         |                         |                                                                  |              |               |                          |                                                      | DROP (inch):<br>at 18 feet 10/12 |             | 2                                                         |                                                       |                    |                      |               |                                    |
|                     | RAL NO                  |                         |                                                                  |              |               |                          |                                                      |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
|                     | O NOTES<br>YMBOLS:      | ▼ A                     | <u>er Level</u><br>t time of Dri<br>t Completio<br>fter Drilling | n of         | Drilling      | U = Thin V<br>R = Rock ( | poen Samp<br>Valled Tube<br>Core Sampl<br>/ane Shear | Sample Rec. =<br>e bpf = E       | Reco        | etration Length<br>overy Length<br>per Foot<br>e per Foot | WOH = Weight of Hammer q <sub>0</sub> = U             | confine<br>ction A | ed Comp<br>ngle (Est |               | kips/sq.ft.<br>rength, kips/sq.ft. |
|                     |                         |                         |                                                                  |              | SAMPL         | E INFO                   | RMATIO                                               | N                                | Ďı          |                                                           |                                                       |                    |                      |               |                                    |
| Elev.<br>(ft)       | Depth<br>(ft)           | Casing<br>Pen.<br>(bpf) | Sample<br>No.                                                    | Type         | Depth<br>(ft) | Pen./<br>Rec.            | Blow<br>Count<br>or                                  | Field / Lab<br>Test Data         | Graphic Log |                                                           | Sample<br>Description &<br>Classification             |                    | H₂0<br>Depth         | R             | temarks                            |
|                     |                         |                         | 41)                                                              | Ц            | 0.2           | (in)                     | RQD                                                  |                                  | U           | -11                                                       |                                                       |                    |                      |               |                                    |
|                     | _                       |                         | 10                                                               | M            | 0-2           | 24/20                    | 4-7-7-5                                              |                                  |             | 0.0                                                       | opsoil<br>lium dense, light brown SAND some           | /                  |                      |               |                                    |
|                     | 1                       |                         | 2D                                                               | $\mathbb{A}$ | 2-4           | 24/19                    | 5-5-7-9                                              |                                  |             | grav                                                      | vel trace silt                                        |                    |                      |               |                                    |
|                     | -                       |                         | 20                                                               | M            | 2-4           | 24010                    | 3-3-7-3                                              |                                  |             | SAN                                                       | lium dense, gray-light brown Silty fine<br>ID         |                    |                      |               |                                    |
|                     | -                       |                         |                                                                  | А            |               |                          |                                                      |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
| 615 -               | - 5                     |                         | 3D                                                               | H            | 5-7           | 24/23                    | 6-6-7-8                                              |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
|                     | +                       |                         |                                                                  | X            |               |                          |                                                      |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
|                     | -                       |                         |                                                                  | Н            |               |                          |                                                      |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
|                     | +                       |                         |                                                                  | Ш            |               |                          |                                                      |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
|                     | +                       |                         |                                                                  |              |               |                          |                                                      |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
| 610 -               | 10                      |                         | 4D                                                               | Н            | 10-12         | 24/23                    | 6-7-6-8                                              |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
|                     | +                       |                         |                                                                  | IXI          |               |                          |                                                      |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
|                     | +                       |                         |                                                                  | Н            |               |                          |                                                      |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
|                     | +                       |                         |                                                                  |              |               |                          |                                                      |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
|                     | +                       |                         |                                                                  |              |               |                          |                                                      |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
| 605 -               | 15                      |                         | 5D                                                               | $\forall$    | 15-17         | 24/23                    | 6-7-8-9                                              |                                  |             | 15.0 Loo                                                  | se to medium dense, light brown fine                  | to                 |                      |               |                                    |
|                     | +                       |                         |                                                                  | XI           |               |                          |                                                      |                                  |             |                                                           | lium SAND some silt                                   |                    |                      |               |                                    |
|                     | +                       |                         |                                                                  | H            |               |                          |                                                      |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
|                     | †                       |                         |                                                                  |              |               |                          |                                                      |                                  |             |                                                           |                                                       |                    | Σ                    |               |                                    |
| .                   | †                       |                         |                                                                  |              |               |                          |                                                      |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
| 600 -               | 20                      |                         | 6D                                                               | Н            | 20-22         | 24/24                    | 3-4-4-6                                              |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
|                     | †                       |                         |                                                                  | XI           |               |                          |                                                      |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
|                     | t                       |                         |                                                                  | H            |               |                          |                                                      |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
|                     | †                       |                         |                                                                  |              |               |                          |                                                      |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
| '                   | †                       |                         |                                                                  |              |               |                          |                                                      |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
| 595 ~               | 25                      |                         | 7D                                                               | М            | 25-27         | 24/24                    | 5-7-10-                                              |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
| '                   | †                       |                         |                                                                  | X            |               |                          | 12                                                   |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
|                     |                         | 4                       |                                                                  |              |               | 1                        |                                                      |                                  |             | 1                                                         | Bottom of Exploration at 27.0 feet                    |                    |                      |               |                                    |
|                     |                         |                         |                                                                  |              |               |                          |                                                      |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
|                     |                         |                         | ent approxin<br>pes, transitio                                   |              | nay be        |                          |                                                      |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
| gradual<br>at times | . Water lev<br>and unde | rel readi<br>r conditi  | ings have b<br>ions stated,                                      | een          | made          |                          |                                                      |                                  |             |                                                           |                                                       |                    |                      |               |                                    |
| other fa            |                         | those p                 | ter may occ<br>resent at th<br>e.                                |              |               |                          |                                                      |                                  |             |                                                           |                                                       | ВО                 | RING                 | NO.:          | B-1                                |

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

| E             | 7                  |                         |                                                                   |            |               |                        | В                                                     | ORING                                  | G           | LOG                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BORING<br>SHEET:                                                | NO.:          | B-2<br>1 of 1                          |
|---------------|--------------------|-------------------------|-------------------------------------------------------------------|------------|---------------|------------------------|-------------------------------------------------------|----------------------------------------|-------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------|----------------------------------------|
| -             |                    |                         |                                                                   |            |               | King, Ind              |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROJEC                                                          | T NO.         | 22-1493                                |
|               |                    | PRO                     | OJECT:                                                            | Р          | ropose        | d Highwa               | ay Garag                                              |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE ST                                                         | FART:         | 10/12/2022                             |
| S.W.          | COLE               | LO                      | CATION                                                            | ; _        | Salisbu       | y Highw                | vay, Ando                                             | over, New Ha                           | mps         | shire                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE FI                                                         | NISH:         | 10/12/2022                             |
|               | ng Info            |                         |                                                                   |            |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
|               |                    |                         | ploration                                                         |            |               |                        |                                                       | ON (FT): 618                           | +/-         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OGGED BY                                                        | : <u>Sean</u> | Hlywa                                  |
|               |                    |                         | V. Cole E                                                         | _          |               |                        |                                                       | Jeff Lee                               | 155         | 10:0                                                      | DRILLING METHOD: Hollow Stem /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | uger                                                            |               |                                        |
|               | IER TYP            |                         | ounted Cf                                                         | VI C       | 000           |                        |                                                       | //OD: <u>2 1/4 ir</u><br>WEIGHT (lbs): |             |                                                           | SAMPLER: Standard Split-Spoon CASING ID/OD: N/A /N/A C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ORE BARR                                                        | FI: N//       | Δ                                      |
|               |                    | 4                       | Y FACTO                                                           | DR:        | 0.82          |                        |                                                       | DROP (inch):                           |             |                                                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | <u></u>       | ·                                      |
| WATE          | R LEVEI            | . DEPT                  | HS (ft):                                                          | Ž          | 7 15 ft F     | ree water              | observed                                              | at 15 feet 10/1:                       | 2/202       | 2                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
|               | RAL NO             |                         |                                                                   |            |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
|               | O NOTES<br>YMBOLS: | ▼ At                    | e <u>r Level</u><br>i time of Dri<br>i Completio<br>iter Drilling | n of       | l<br>Drilling | U = Thin V<br>R = Rock | Spoon Samp<br>Valled Tube<br>Core Samp!<br>Vane Shear | Sample Rec. =<br>bpf = 1               | Reco        | etration Length<br>overy Length<br>per Foot<br>e per Foot | WOH = Weight of Hammer q <sub>u</sub> = Un<br>RQD = Rock Quality Designation Ø = Fric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ld Vane Shea<br>confined Com<br>tion Angle (El<br>ot Applicable | pressive S    | , kips/sq.ft,<br>Strength, kips/sq.ft. |
|               |                    |                         |                                                                   |            | SAMPL         | E INFO                 | RMATIO                                                | N                                      | 5           |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
| Elev.<br>(ft) | Depth<br>(ft)      | Casing<br>Pen,<br>(bpf) | Sample<br>No.                                                     | Type       | Depth<br>(ft) | Pen./<br>Rec.<br>(in)  | Blow<br>Count<br>or<br>RQD                            | Field / Lab<br>Test Data               | Graphic Log |                                                           | Sample<br>Description &<br>Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H₂0<br>Depth                                                    |               | Remarks                                |
|               |                    |                         | 10                                                                | 1/         | 0-2           | 24/12                  | 2-3-8-8                                               |                                        | $\vdash$    | 0.2 \ 3" T                                                | opsoil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                               |               |                                        |
|               | †                  |                         |                                                                   | IXI        |               |                        |                                                       |                                        |             |                                                           | ium dense, light brown fine to mediur<br>ID trace gravel trace silt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n                                                               | İ             |                                        |
|               | +                  |                         | 2D                                                                | $\Theta$   | 2-4           | 24/10                  | 6-6-6-6                                               |                                        |             | SAI                                                       | no trace graver trace sit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 |               |                                        |
| 615 -         | +                  |                         |                                                                   | IXI        |               |                        |                                                       | }                                      |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
|               | +                  |                         |                                                                   | Д          |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
|               | 5                  |                         | 3D                                                                |            | 5-7           | 24/13                  | 4-5-8-                                                |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
| ١.            |                    |                         | 30                                                                | M          | 3-7           | 24/13                  | 10                                                    |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ì                                                               |               |                                        |
| 1             |                    |                         |                                                                   | Λ          |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
|               |                    |                         |                                                                   | Г          |               |                        |                                                       |                                        |             | -                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
| 610 -         | Ť                  |                         |                                                                   |            |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
| '             | †                  | ŀ                       |                                                                   |            |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
|               | 10                 |                         | 4D                                                                | 7          | 10-12         | 24/23                  | 5-5-6-6                                               |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
| -             | 2                  |                         |                                                                   | IX         |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
|               | +                  | ł                       |                                                                   | A          |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
| 605 -         | ļ                  |                         |                                                                   |            |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
|               | 1                  |                         |                                                                   |            |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
|               | 45                 |                         |                                                                   |            |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \ <u>\</u> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                     |               |                                        |
|               | 15                 |                         | 5D                                                                | $\nabla$   | 15-17         | 24/24                  | 5-5-5-6                                               | ID 22183s<br>w =24.9 %                 |             | 15.0 Loo                                                  | se, brown Silty fine SAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 |               |                                        |
| '             | †                  |                         |                                                                   | X          |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
| '             | †                  |                         |                                                                   | H          |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
| 600 -         | +                  |                         |                                                                   |            |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                               |               |                                        |
|               | +                  |                         |                                                                   |            |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
|               | 20                 |                         | 6D                                                                |            | 20-22         | 24/24                  | 3-5-6-6                                               |                                        | _           | 20.0 1.00                                                 | and a second consideration of the first terms of the second of the secon |                                                                 |               |                                        |
| j .           | _                  |                         |                                                                   | M          | 20-22         | 24124                  | 0-0-0-0                                               |                                        |             | LUU                                                       | se to medium dense, light brown fine lium SAND trace silt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to                                                              |               |                                        |
|               | 1                  |                         |                                                                   | $\Lambda$  |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
|               |                    |                         |                                                                   |            |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
| 595 -         | T                  |                         |                                                                   |            |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
|               | †                  |                         |                                                                   |            |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
| il i          | 25                 |                         | 7D                                                                | 7          | 25-27         | 24/24                  | 3-4-5-7                                               |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
| 3             | +                  |                         |                                                                   | JX.        |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |
| <u> </u>      |                    |                         |                                                                   | <b>y</b> \ |               |                        |                                                       |                                        | 1           | L                                                         | Bottom of Exploration at 27.0 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 |               |                                        |
| 1             |                    |                         |                                                                   |            |               |                        |                                                       |                                        |             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |               |                                        |

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

BORING NO.:

B-2

|               |                        |               |                                                           | _         |            |                          | B                                                    | ORING                         | GI            | LOG                                                       |                                                                                                           |          | ORING                   | NO.:       | B-3                               |
|---------------|------------------------|---------------|-----------------------------------------------------------|-----------|------------|--------------------------|------------------------------------------------------|-------------------------------|---------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------|-------------------------|------------|-----------------------------------|
|               |                        | -             | ENY. 1                                                    | n .       | i 0 '      | King, Inc                | 10100                                                | 511111                        |               |                                                           |                                                                                                           |          | HEET:                   | T. N. C.   | 1 of 1                            |
| T             | 7                      |               |                                                           |           |            |                          | s.<br>ay Garag                                       | 10                            |               |                                                           | <del></del> ·                                                                                             |          | ROJEC<br>ATE ST         | _          | 22-1493<br>10/12/2022             |
| SWIC          | OLE                    |               |                                                           |           |            |                          |                                                      | over, New Ha                  | mps           | shire                                                     | <del></del>                                                                                               |          | ATE FIN                 | _          | 10/12/2022                        |
|               |                        |               |                                                           | _         |            |                          |                                                      |                               | _             |                                                           |                                                                                                           |          |                         |            |                                   |
|               | ng Info                |               | oloration                                                 | Loca      | ation Plar | n <b>E</b>               | ELEVATIO                                             | ON (FT):620                   | +/-           |                                                           | TOTAL DEPTH (FT): 27.0                                                                                    | LOG      | GED BY:                 | Sean H     | llywa                             |
| RILL          | NG CO.                 | : S. V        | V. Cole E                                                 | xplo      | rations, l |                          |                                                      | Jeff Lee                      |               |                                                           | DRILLING METHOD: Holk                                                                                     |          |                         |            |                                   |
|               |                        |               | ounted Cl                                                 | ME        | 850        |                          |                                                      | /OD: 2 1/4 in                 |               |                                                           | SAMPLER: Standard Split-                                                                                  |          |                         |            |                                   |
|               |                        |               | tomatic Y FACTO                                           | OR.       | 0.82       |                          |                                                      | WEIGHT (lbs):<br>DROP (inch): |               | 0                                                         | CASING ID/OD: N/A /N/A                                                                                    | COR      | E BARRE                 | L: N/A     |                                   |
|               |                        |               |                                                           |           |            |                          |                                                      | d at 15.5 feet 1              |               | 2022                                                      |                                                                                                           |          |                         |            |                                   |
|               | RAL NO                 |               |                                                           |           |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
|               | MOTES<br>MBOLS:        | ▼ At          | <u>r Levet</u><br>time of Dr<br>Completio<br>ter Drilling | on of     | Drilling   | U = Thin V<br>R = Rock ( | poon Samp<br>Valled Tube<br>Core Sampl<br>Vane Shear | Sample Rec. =<br>e bpf = B    | Reco<br>Blows | etration Length<br>overy Length<br>per Foot<br>e per Foot | WOR = Weight of Rods WOH = Weight of Hammer RQD = Rock Quality Designation PID = Photoionization Detector |          | fined Comp<br>Angle (Es | pressive S | kips/sq.ft.<br>irength, kips/sq.f |
|               |                        | Ī             |                                                           |           | SAMPL      | E INFO                   | RMATIO                                               | N                             | 6             | Ī                                                         |                                                                                                           |          | T                       |            |                                   |
| lev.          | Depth                  | Casing        |                                                           | П         |            | Day /                    | Blow                                                 |                               | Graphic Log   |                                                           | Sample                                                                                                    |          | H₂0                     |            |                                   |
| ft)           | (ft)                   | Pen.<br>(bpf) | Sample<br>No.                                             | Type      | Depth      | Pen./<br>Rec.            | Count                                                | Field / Lab<br>Test Data      | aphi          |                                                           | Description &<br>Classification                                                                           |          | Depth                   | l F        | Remarks                           |
|               |                        |               | 140,                                                      |           | (ft)       | (in)                     | or<br>RQD                                            | 162(1)3(3                     | Ö             |                                                           | o.aco.noanon                                                                                              |          |                         |            |                                   |
|               |                        |               | 1D                                                        | M         | 0-2        | 24/12                    | 2-3-4-4                                              |                               | $\vdash$      |                                                           | se to medium dense, light bro                                                                             | wn SAND  | +                       |            |                                   |
| -             | -                      |               |                                                           | X         |            |                          |                                                      |                               |               | som                                                       | e gravel trace silt                                                                                       |          |                         |            |                                   |
| -             | -                      |               | 2D                                                        | $\forall$ | 2-4        | 24/12                    | 4-4-5-5                                              |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
| -             | -                      |               |                                                           | X         |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
| -             | -                      |               |                                                           | Н         |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
| 5             | - 5                    |               | 3D                                                        | Н         | 5-7        | 24/12                    | 3-4-4-5                                              | ID 22184s                     |               |                                                           |                                                                                                           |          |                         |            |                                   |
| _             | -                      |               | 05                                                        | M         | 0-7        | 2-17 12                  | 3-4-4-3                                              | w =2.2 %                      |               |                                                           |                                                                                                           |          |                         |            |                                   |
|               |                        |               |                                                           | Δ         |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
|               |                        |               |                                                           |           |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
| -             |                        |               |                                                           |           |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
| -             | -                      |               |                                                           |           |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
| -             | — 10                   |               | 4D                                                        | $\forall$ | 10-12      | 24/24                    | 5-5-6-7                                              |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
| -             | -                      |               |                                                           | XI        |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
| -             | -                      |               |                                                           | H         |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
| -             | -                      |               |                                                           |           |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
| -             | L                      |               |                                                           |           |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
| 5 —           | <b>—</b> 15            |               | ED                                                        | Ц         | 15 47      | 24/04                    | 6 5 7 7                                              |                               | <u></u>       | 15.0                                                      |                                                                                                           |          |                         |            |                                   |
|               |                        |               | 5D                                                        | M         | 15-17      | 24/24                    | 6-5-7-7                                              |                               |               | 15.0 Mec                                                  | lium dense, gray Silty fine SA                                                                            | ND       | ∇                       |            |                                   |
|               |                        | ĺ             |                                                           | M         |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
|               |                        |               |                                                           | П         |            |                          |                                                      |                               |               | =                                                         |                                                                                                           |          |                         |            |                                   |
| -             | -                      |               |                                                           |           |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
| -             | -                      | 1             |                                                           |           |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
| 0 –           | - 20                   |               | 6D                                                        | H         | 20-22      | 24/24                    | 4-6-7-                                               |                               | $\vdash$      | 20.0 Med                                                  | lium dense, light brown fine to                                                                           | o medium | $\dashv$                |            |                                   |
| -             | -                      |               |                                                           | X         |            |                          | 10                                                   |                               |               |                                                           | ID some silt                                                                                              | - modium |                         |            |                                   |
| =             | -                      |               |                                                           | Д         |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
| _             | _                      |               |                                                           |           |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
| _             | _                      |               |                                                           |           |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
| 5 -           | 2F                     |               |                                                           |           |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
| J —           | 25                     | 1             | 7D                                                        | M         | 25-27      | 24/24                    | 4-7-9-<br>12                                         |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
| -             |                        |               |                                                           | M         |            | 1                        | '-                                                   |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
| _             |                        | 1             |                                                           | 11        |            |                          |                                                      | 1                             | <u></u>       | .L                                                        | Bottom of Exploration at 27                                                                               | .0 feet  |                         | 1          |                                   |
|               |                        |               |                                                           |           |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
|               |                        |               |                                                           |           |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          |                         |            |                                   |
| undai         | y betweer              | soil typ      | nt approximes, transitions have b                         | ons r     |            |                          |                                                      |                               |               |                                                           |                                                                                                           |          | _                       |            |                                   |
| imes<br>ctuat | and unde<br>ons of gro | r condition   | ngs have b<br>ons stated.<br>or may occ                   | our du    | ue to      |                          |                                                      |                               |               |                                                           |                                                                                                           | _        |                         |            |                                   |
| ther fac      | tors than              |               | esent at th                                               |           |            |                          |                                                      |                               |               |                                                           |                                                                                                           | E        | ORING                   | NO.:       | B-3                               |

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

| 1                   | $\sim$            |                         |                                                                |              |               |                          | В                                                     | ORING                         | 3           | LOG                                                       |                                                          |                    | RING<br>EET:         | NO.: _  | B-4<br>1 of 1                        |
|---------------------|-------------------|-------------------------|----------------------------------------------------------------|--------------|---------------|--------------------------|-------------------------------------------------------|-------------------------------|-------------|-----------------------------------------------------------|----------------------------------------------------------|--------------------|----------------------|---------|--------------------------------------|
|                     |                   |                         | ENT: D                                                         |              |               |                          |                                                       |                               |             |                                                           |                                                          |                    | OJEC.                | T NO.   | 22-1493                              |
|                     |                   |                         |                                                                |              |               |                          | ay Garag                                              |                               |             |                                                           |                                                          |                    |                      | ART:    |                                      |
|                     | COLE              |                         |                                                                | : _          | Salisbur      | y Highw                  | ay, Ando                                              | over, New Ha                  | mps         | shire                                                     |                                                          | DA.                | TE FIN               | IISH: _ | 10/12/2022                           |
|                     | ng Info           |                         | <b>ion</b><br>ploration L                                      | 001          | ation Dlan    | - [                      | I EVATIO                                              | N (FT): 618'                  | 41          |                                                           | TOTAL DEDTU/ET): 970                                     | neer               | n ev.                | Sean I  | المسح                                |
|                     |                   |                         | V. Cole Ex                                                     |              |               |                          |                                                       | Jeff Lee                      | +/-         |                                                           | TOTAL DEPTH (FT): 27.0 LO DRILLING METHOD: Hollow Stem / |                    | .ום ע                | Jean    | niywa                                |
| RIG T               | YPE: _T           | rack Mo                 | ounted Cil                                                     |              |               |                          |                                                       | /OD: 2 1/4 in                 |             |                                                           | SAMPLER: Standard Split-Spoon                            |                    |                      |         |                                      |
|                     | IER TYP           |                         | tomatic<br>Y FACTO                                             | 10.          | 0.82          |                          |                                                       | WEIGHT (lbs):<br>DROP (inch): |             | 0                                                         | CASING ID/OD: N/A /N/A C                                 | ORE E              | BARRE                | L: N/A  | <u> </u>                             |
|                     |                   |                         |                                                                |              |               |                          |                                                       | at 15 feet 10/12              |             | 2                                                         |                                                          |                    |                      |         |                                      |
| $\overline{}$       | RAL NO            |                         |                                                                |              |               |                          |                                                       |                               |             |                                                           |                                                          |                    |                      |         |                                      |
|                     | O NOTES<br>YMBOLS | ▼ At                    | e <u>r Level</u><br>time of Dril<br>Completion<br>ter Drilling |              | Drilling      | U = Thin V<br>R = Rock ( | poon Samp<br>Valled Tube<br>Core Sample<br>Vane Shear | Sample Rec. =<br>bpf = E      | Reco        | etration Length<br>overy Length<br>per Foot<br>e per Foot | WOH = Weight of Hammer q <sub>0</sub> = Un               | confine<br>tion Ar | ed Comp<br>ngle (Est |         | kips/sq.ft.<br>itrength, kips/sq.ft. |
|                     |                   |                         |                                                                |              | SAMPL         | E INFO                   | RMATIO                                                | N                             | - B         |                                                           |                                                          |                    |                      |         |                                      |
| Elev.<br>(ft)       | Depth<br>(ft)     | Casing<br>Pen.<br>(bpf) | Sample<br>No.                                                  | Туре         | Depth<br>(ft) | Pen./<br>Rec.<br>(in)    | Blow<br>Count<br>or                                   | Field / Lab<br>Test Data      | Graphic Log |                                                           | Sample<br>Description &<br>Classification                |                    | H₂0<br>Depth         | F       | Remarks                              |
|                     |                   |                         | 10                                                             |              | 0-2           | 24/24                    | RQD<br>2-2-3-3                                        |                               | Ľ           | Loo                                                       | se, light brown fine SAND with roots to                  |                    |                      |         |                                      |
| ,                   | +                 |                         |                                                                | M            |               |                          |                                                       |                               |             | 1 fo                                                      |                                                          |                    |                      |         |                                      |
| ,                   | +                 |                         | 2D                                                             | $\mathbb{H}$ | 2-4           | 24/12                    | 4-3-4-4                                               |                               |             |                                                           |                                                          |                    |                      |         |                                      |
| 615 -               | +                 |                         |                                                                | X            |               |                          |                                                       |                               |             |                                                           |                                                          | ]                  |                      |         |                                      |
|                     | +                 |                         |                                                                | Н            |               |                          |                                                       |                               |             |                                                           |                                                          |                    |                      |         |                                      |
|                     | - 5               |                         | 3D                                                             | И            | 5-7           | 24/12                    | 4-4-4-5                                               |                               |             |                                                           |                                                          |                    |                      |         |                                      |
| ,                   | †                 |                         |                                                                | X            |               |                          |                                                       |                               |             |                                                           |                                                          |                    |                      |         |                                      |
| _ '                 | †                 |                         |                                                                | Н            |               |                          |                                                       |                               |             |                                                           |                                                          |                    |                      |         |                                      |
| 610 -               | †                 |                         |                                                                |              |               |                          |                                                       |                               |             |                                                           |                                                          |                    |                      |         |                                      |
| ,                   | †                 |                         |                                                                | Ш            |               |                          |                                                       |                               |             |                                                           |                                                          |                    |                      |         |                                      |
|                     | 10                |                         | 4D                                                             | М            | 10-12         | 24/24                    | 6-6-8-8                                               |                               |             | 10.0 Med                                                  | lium dense, light brown Silty fine SAN                   | D                  |                      |         |                                      |
| ,                   | Ť                 |                         |                                                                | M            |               |                          |                                                       |                               |             |                                                           |                                                          |                    |                      |         |                                      |
| 606                 |                   |                         |                                                                | П            |               |                          |                                                       |                               |             |                                                           |                                                          |                    |                      |         |                                      |
| 605 -               |                   |                         |                                                                | Ш            |               |                          |                                                       |                               |             |                                                           |                                                          |                    |                      |         |                                      |
|                     | 15                |                         |                                                                |              |               |                          |                                                       |                               |             | <u> </u>                                                  |                                                          |                    | Ā                    |         |                                      |
|                     |                   |                         | 5D                                                             | M            | 15-17         | 24/16                    | 2-3-4-4                                               |                               |             | 15.0 Loo                                                  | se, light brown fine SAND trace silt                     |                    |                      |         |                                      |
|                     |                   |                         |                                                                | $\mathbb{N}$ |               |                          |                                                       |                               |             |                                                           |                                                          |                    |                      |         |                                      |
| 600 -               |                   |                         |                                                                |              |               |                          |                                                       |                               |             |                                                           |                                                          |                    |                      |         |                                      |
|                     |                   |                         |                                                                |              |               |                          |                                                       |                               |             |                                                           |                                                          |                    |                      |         |                                      |
|                     | 20                |                         | 6D                                                             | Ц            | 20.00         | 04/04                    | 2 4 6 7                                               |                               |             |                                                           |                                                          |                    |                      |         |                                      |
|                     | ļ <sup></sup>     |                         | 90                                                             | M            | 20-22         | 24/24                    | 3-4-6-7                                               |                               |             |                                                           |                                                          |                    |                      |         |                                      |
|                     | ļ                 |                         |                                                                | $\mathbb{A}$ |               |                          |                                                       |                               | $\vdash$    |                                                           | dium dense, light brown SAND some                        | $\dashv$           |                      |         |                                      |
| 595 -               | ļ                 | ļ                       |                                                                |              |               |                          |                                                       |                               |             | grav                                                      | el trace silt                                            |                    |                      |         |                                      |
|                     | <u> </u>          |                         |                                                                |              |               |                          |                                                       |                               |             |                                                           |                                                          |                    |                      |         |                                      |
|                     | 25                |                         | 7D                                                             |              | 25-27         | 24/24                    | 4-6-7-8                                               |                               |             |                                                           |                                                          |                    |                      |         |                                      |
| ,                   | +                 |                         | -                                                              | $ \chi $     |               |                          |                                                       |                               |             |                                                           |                                                          |                    |                      |         |                                      |
|                     |                   |                         |                                                                | M            |               | <u></u>                  |                                                       |                               |             |                                                           | Bottom of Exploration at 27.0 feet                       |                    |                      |         |                                      |
|                     |                   |                         |                                                                |              |               |                          |                                                       |                               |             |                                                           |                                                          |                    |                      |         |                                      |
| Stratific           |                   |                         | nt approxim                                                    |              |               |                          |                                                       |                               |             |                                                           |                                                          | _                  |                      |         |                                      |
| gradual<br>at times | . Water le        | /el readi               | es, transitio<br>ngs have bi<br>ons stated.                    |              |               |                          |                                                       |                               |             |                                                           |                                                          |                    |                      |         |                                      |
| Fluctua<br>other fa | tions of gro      | undwat                  | ons stated.<br>er may occi<br>resent at the                    |              |               |                          |                                                       |                               |             |                                                           |                                                          |                    | missa                | NO      | D 4                                  |
|                     | ements we         |                         |                                                                |              |               |                          |                                                       |                               |             |                                                           |                                                          | l BO               | RING                 | NO.:    | B-4                                  |

# KEY TO NOTES & SYMBOLS Test Boring and Test Pit Explorations

Stratification lines represent the approximate boundary between soil types and the transition may be gradual.

#### Key to Symbols Used:

| W | - | water content, percent (dry weight basis) |
|---|---|-------------------------------------------|
|---|---|-------------------------------------------|

qu - unconfined compressive strength, kips/sq. ft. - laboratory test

S<sub>v</sub> - field vane shear strength, kips/sq. ft. L<sub>v</sub> - lab vane shear strength, kips/sq. ft.

q<sub>p</sub> - unconfined compressive strength, kips/sq. ft. – pocket penetrometer test

O - organic content, percent (dry weight basis)

W<sub>L</sub> - liquid limit - Atterberg test
 W<sub>P</sub> - plastic limit - Atterberg test
 WOH - advance by weight of man
 WOR - advance by weight of rods

HYD - advance by force of hydraulic piston on drill

RQD - Rock Quality Designator - an index of the quality of a rock mass.

 $\gamma_T$  - total soil weight  $\gamma_B$  - buoyant soil weight

#### **Description of Proportions:**

#### **Description of Stratified Soils**

|        |                  | Parting:    | 0 to 1/16" thickness                |
|--------|------------------|-------------|-------------------------------------|
| Trace: | 0 to 5%          | Seam:       | 1/16" to 1/2" thickness             |
| Some:  | 5 to 12%         | Layer:      | 1/2" to 12" thickness               |
| "Y"    | 12 to 35%        | Varved:     | Alternating seams or layers         |
| And    | 35+%             | Occasional: | one or less per foot of thickness   |
| With   | Undifferentiated | Frequent:   | more than one per foot of thickness |

**REFUSAL:** Test Boring Explorations - Refusal depth indicates that depth at which, in the drill foreman's opinion, sufficient resistance to the advance of the casing, auger, probe rod or sampler was encountered to render further advance impossible or impracticable by the procedures and equipment being used.

**REFUSAL:** Test Pit Explorations - Refusal depth indicates that depth at which sufficient resistance to the advance of the backhoe bucket was encountered to render further advance impossible or impracticable by the procedures and equipment being used.

Although refusal may indicate the encountering of the bedrock surface, it may indicate the striking of large cobbles, boulders, very dense or cemented soil, or other buried natural or man-made objects or it may indicate the encountering of a harder zone after penetrating a considerable depth through a weathered or disintegrated zone of the bedrock.

## APPENDIX D

**Laboratory Test Results** 



# **Report of Gradation**

ASTM C-117 & C-136

Project Name ANDOVER NH - PROPOSED HIGHWAY GARAGE - EXPLORATIONS

AND GEOTECHNICAL ENGINEERING SERVICES

Client DUBOIS & KING INC.

Exploration B2, 5D, 15'-17'

Material Source

Project Number 22-1493

Lab ID 22183\$

Date Received 10/14/2022

Date Completed 10/18/2022

Tested By BRADLEY GERSCHWILER

| STANDARD<br>DESIGNATION (mm/µm) | SIEVE SIZE | AMOUNT PASSING (% | <u>%)</u> |
|---------------------------------|------------|-------------------|-----------|
| 4.75 mm                         | No. 4      | 100               | 0% Gravel |
| 2.00 mm                         | No. 10     | 100               |           |
| 850 um                          | No. 20     | 100               |           |
| 425 um                          | No. 40     | 98                | 88% Sand  |
| 250 um                          | No. 60     | 75                |           |
| 150 um                          | No. 100    | 40                |           |
| 75 um                           | No. 200    | 12,0              | 12% Fines |



Comments: Moisture Content = 24.9%

Sheet



# **Report of Gradation**

Project Name

ANDOVER NH - PROPOSED HIGHWAY GARAGE - EXPLORATIONS

AND GEOTECHNICAL ENGINEERING SERVICES

Client

DUBOIS & KING INC.

Exploration

B3, 3D, 5'-7'

Material Source

Project Number 22-1493

Lab ID

22184S

Date Received

10/14/2022

Date Completed 10/18/2022

Tested By

**BRADLEY GERSCHWILER** 

| STANDARD<br>DESIGNATION (mm/µm) | SIEVE SIZE | AMOUNT PASSING (%)    |  |
|---------------------------------|------------|-----------------------|--|
| 12.5 mm                         | 1/2"       | 100                   |  |
| 9.5 mm                          | 3/8"       | 97                    |  |
| 6.3 mm                          | 1/4"       | 95                    |  |
| 4.75 mm                         | No. 4      | <b>94</b> 6.1% Gravel |  |
| 2.00 mm                         | No. 10     | 91                    |  |
| 850 um                          | No. 20     | 87                    |  |
| 425 um                          | No. 40     | <b>55</b> 92.5% Sand  |  |
| 250 um                          | No. 60     | 18                    |  |
| 150 um                          | No. 100    | 5                     |  |
| 75 um                           | No. 200    | <b>1.4</b> 1.4% Fines |  |



Comments: Moisture Content = 2.2%

**Sheet**